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SELF COMPENSATED MULTILAYER DISTRIBUTED C0T1STAHT DELAY LIKES 

Prepared ayi 

William So Carley 

ABSTRACTt The inductance of a line is known to decrease with 
frequency,. The stray capacitance between turns is actually in 
parallel with the inductance of a turn. This forms a parallel 
circuit which can help offset the variation of inductance with 
frequency,. In the multilayer case the stray capacitance is 
increased many times. From these principles, design equations 
are developed for the multilayer line. 

In the impedance range of 2.500 to 10s000 ohms these lines 
have delays ranging from 0.05 to 0,5 microsecond per axial 
incho These lines have characteristic impedances which are at 
least three times greater than conventional lines and delay 
times per unit length of about 10 times that of delay line 
cable., 

Experimental results in the form of photographs of the pulse 
response of several of these lines to pulse durations of 1.0 
microsecond are given* RG-65 U delay line cable is used for 
comparisons 

Experimental results shov; that the rise time of multilayer 
lines can be shorter than commevoi&l delay line cable if the 
delay is in the vicinity of h microseconds, 

The investigation was mac?e as cart of Foundations! Research 
Task Numbers FR-^-52, FR-1;-^, and Ffl~29~5*K 
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The results of an investigation of high impedance delay lines 
are plven in this report. References are made in the text to 
thy following publications: 
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SELF' COMPENSATED MULTILAYER DISTRIBUTED CONSTANT DELAY LINES 

INTRODUCTION 

1. Increasing application is being cade of distributed constant 
delay lines as circuit elements in present day electronic equip- 
ment* The characteristic impedance of these lines has been 
limited to values between *+00 and 3,000 ohms and delay times up 
to 1/2 microsecond per foot. The author recently reported pre- 
liminary investigations on multilayer bank wound delay lines 
with impedances from 5,000 to £0^000 ohms and delay times up to 
1/2 microsecond per inch1*2*^****?. 2he object of this report is 
to consolidate the theoretical work in the design of multilayer 
lines with experimental results in the impedance range of 2.500 
to 10,000 ohms. 

2. Figure 1 is a view of the line, with a section taken along 
the axis of the solenoid. The line is assumed to be infinite 
in length and of a multilayer bank wound construction with 
capacitance to ground. In general the line was wound over the 
ground as shown in Figure 1 but several lines were wound with 
the ground over the line. 2 is taken along the axial direction 
of the winding. It is assumed that a mutual inductance exists 
between two elementary lengths of the wire which is dependent 
solely on the distance between them* A stray capacitance also 
exists between each turn and several of its neighbors. The 
overall diaceter of the wire with its insulation is b and that 
of the uninsulated wire is a. The number of layers in the bank 
winding is p. It is assumed that the wire in traveling from a 
top layer to a bottom layer, does not take up any space. It Is 
further assumed that the diameter D is a small part of a wave 
length at the highest frequency of interest* 

3* The schematic diagram of the line in terms of lumped para- 
meters is shown in Figure 2, The section of the uniform line 
dZ in length is characterized by a shunt conductance dG * GdZ. 
a shunt capacitance dC » C0dZ. and a series resistance dK = mZ„ 
The  structure is further complicated by the stray capacitance 
between turns and by the fact that the total phase shift is so 
large that the inductance of the infinitesimal section under 
study is influenced by the phase cf the current flowing in many 
other turns o It is assumed that the phase difference between 
the currents in the other turns is dependent on the distance 
between them aid the turn under consider a tion» 

k-0    It will be assumed that the characteristics of the line can 
be deduced from the characteristics of any one elementary section 
taking Into account the effects of other sections on the ele- 
n«ntary section. 

1 
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5. As in standard transmission line procedure we will assume 
a definite input current and voltage, and calculate the output 
current and voltage from the constants of the line0 As the 
line sections are already reduced to infinitesimal sections we 
may neglect the shunt elements in the computation of the effect 
or the series elements and vice versa. 

6. In each section of the line the voltage is decreased be- 
caus3 of the series impedance and the current decreased by the 
action of the shunt admittance and the stray capacitance., In 
order to simplify the derivation It wJ.ll now be assumed that 
the current and voltage are sinusoidally distributed in the 
axial direction (Z) except in the calculation of the effective 
series inductance and the effects of the stray capacitance* 
This is a very good approximation as the lines have a very low 
loss and in fact will later bo assumed lossless to further 
simplify the rssulting equations,, 

7. Noting that a dot over the quantity is used to denote a 
vector the equations of the voltage drop across an infinitesimal 
section of line and the shunt current may be written as 

>dv(w",t) = RKw'StMw"-^ j m(w)£ i(w,,t)dw,| dw" 
(1) 

V' =-- *o 

and 

u-° 

-di(w",t) = Gv(v"it)dw"+ci.  v(w,/fc)dw"+f/c(v)ij v(w",t) 

~v(v%tj] dw'j dw"u 
where v = alternating component of the voltage, 

i = alternating component of the current, 
R = resistance per unit length (mhos/meter) 

(2) 

G = conductance per unit length (mhos/meter; 
p = capacitance to core per unit length (far^ 

sjj(^j s nm&ual inductsnce per unit length between two 
of T*in« TeriffthdiTand dZ^ 

Cp = capacitance to core per unit length (farads/meter)9 
mutual inductsnce per unit length between two 
elementary sections of line length dZ and dZ* 
separated by a distance w (henries/meter)« 

w = (z«~z+f «»f) «=   w» - v" 

w"= z+r 
let i = linax sy-P  j«#(t-i') 

V 
and v s Vmax exp 3w(t-w») 

V 
where 0  » 2«V - 2*f 

A 

V « velocity of propagation* 

•«•<»,.. .   -•- . *-s- £:.     .  i<lu.»«. ••*• «w-:'f* -A.-.-?- '-^Mur-v-v - ». - . .    b4Hft 
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Let us look at J  m(w) * i(w",t)dw,J 

» iu>l  /m(w) exp j u;(t-v') dw», 

* .jwl exp jw (t-w^) | m(w) expfj Vw)dw, 

« jmi L(*>),       <* (It) 

where L(u>) = / m(w) expf ju'v ><*w, (5) 
v  /^        v '" > 

thus L&6 la the Fourier transform of m(w) 

8o This problem may he simplified considerably by the follow- 
ing approximation.,  Let us assume that the i>adial depth of the 
winding pb <<  *? ajud in fact is ao small that (r,~r) —*> 0. 
In other words we assume we have a single layer solenoid wound 
with wire whose diameter is ^0 Thia assumption has been 
experimentally verified as will be shown later«  In practice $ 
would have a lower limit of about 0.07" and pb upper limit abTJut 
0.012" so that r' would vary from 0.06V to 0.076"«, 

9« The parameter w then becomes a function of the axial sepa- 
ration between the reference turn and all other turns. This 
problem has oeen  solved .  The authors replaced the coil with a 
thin cylindrical sheet of radius s over which flows a current 
sheet in the axial direction 

Is = I0 exp(-pZ) per unit length 

where $ * 2ir 

The solution of equation (5) was given as 

L(<£) =  felT (m)) K, OrD)l  L_ (*> 
v    L - X  -1- X .' 

where 1^ and K±  are modified Bessel Functions of the first and 
sscoixu xxj.nc» * p 

LQ » inductance of the line at low frequencies (henries/meter)„ 
D * mean line diameter (meters)„ 
;, « axial wave length along the line (meters). 

10o We now determine the capacitance coupling to the n th coll 
by considering the effect of ths nearest neighboring coils onlyQ 
Inasmuch as the variable of Integration in equation (2) is w°   f 

•MOBs; - •    ..•„     — «. ••••••>. u t.,    *  'mms--' •» T . 3.m   '•'.<**»*&. 
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one can take the differentiation sign out of the Integral thus 

/cCw) *  |v(v»,t) ~v(w»,t)j dv« - 

iL 7 c(w) fvCw-jt) -v(w',t)l dvr'o (7J 
5 

11 o    As the capacitance por unit length is constant equation 
(7) becomes 

Ml 

^ JL   /[v(w\t)  -v(w',t)]     dw« (8) 

Where C«.  » stray capacitance between two adjacent turns and 
Of.   m stray capacitance/unit 3.engthc 

•-»* .*>*•>-     .«...   •^>>«ssss»BBNw,'*a3ta*i-**)<«*'«»«:- 
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7(w",t 

J 
) ~v(w»,t) ,- d »»s-(vn,-n-i -vn) -f-<vn.„ -vn).f.(vn,1 -vn) 

„(vn^nil) ^ <vn  -vn^. p ) ~(vn =vn..fp+i) (9) 

!£ the n th turn had "been on the inside boundary 

v(w»»,t) - v(vv',t)"]d^v'= - f(vn=.D -vft) - (vn - vn+1) = (vn .7n 

•>(vn -vn^pi-lJ. 

If the n th turn had been on the outside boundary 
fr ->     r 

Jjv(w",t)-v(w''?L) dw's- / (vn-p-,i -vn)~f-fvn^p  -vn)-f (Vn.,a vn) 

(vn 'Vn^p)J . 
Expanding by means of a Taylor series for the voltage of the 
adjacent turn in reference t>~> that of its neighboring turn and 
substituting x for w' 

*+p) 

(10) 

(11) 

vn+ 1-  vn i 

vn«l = vn 

v. A    b dtfjj .... b£  dfyn . /. . . . . 
Ux 2,!   dx2" 

6 ^n^.b2  d2v 
dx* dX ^2' 

n „ • • *  o       « 

vn+ p- vn + o-U b ifauL&A _L *' d2{vn +Jfci).     , 
dx 

vn»p— vn-p + b   (dvr  «.+. i J     b2       dTVn-n 4 1 ) 

dx ^* dx^ 

a 

2, dx 

vn ip4-vn4 p.- 2 t b    ?nt^* §,     dT^±P-2# 
ax 2 

•*) D • O O 

dx< 

b^ d3 

© o O 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
dx ° ;;        dx^ 

Vn + p + l = vnfP + b    |^n + p).|.|f.   4?2  (vn + p)+.^£3(vni..p)   (IS 

Substituting equation   (14)   in equation  (18)   we  obtain 

•"•*W»«*SH«»»«JHi^^ '«"'- •»«***«••- J-USsfifc?"**.*. .sriiMitaw****1*' S 
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rn* p+1 = vn+o~H~k &-(V-p-lM— ilL(v T> b£   d^  (v .A 

f>       o       © 

a       «     t       «       I (19) 

Collecting terms 

Wf vntP-.Vr- 21 ^-^n.f-p-l)f ^b£ flLCv^^jL ^ _d3 (^    ^ 
UA ox* 3      dxJ 

,   2b4 d4.   rvnAn   *),.. (20) 

Substituting equation  (14)   in equation  (18) 

rn+Ptl = vn-fp-2-i.^ feW+p-2*f^- ^  Wzlf 

+ ab^i ^g^fp-2^ - . Ja2|S^(^p.2v * 

tife^V- 1 
o        « +• 2b4 

Collecting  terms 

v 

3 

2  *2 

<*i-(v 1 
dx^

vn+p^2^   •   '   '    f,n   (2i; 

•aWl-Vp.2+311 A-(vn+p_2)+|b£ ^(vn+p.2) ^3 jl3 ( j 
UJi 2       dx-5 

+ 24 •gprvn-fp-2<>-f<>   •   •   •   • 

Substituting equation  (17)   in equation  (22) 
Vn+p+l = *|rntp~34.4j2 4-(v^P"3U &£ ^<Vn+p-3L26J&L dL(v a    O r     dx        •   J < dx2 " '3 dx3^Vntp-»3J 

\—<-/ 

29b4    d4  (v        0). 
J dx 

6 

(23) 

»#U»--«s^* * • •'*£"•>• tJWH millli l1jBK»Bi#»^«g?J»W»'iWltr'^1' ? 
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In similar fashion 

•f ~P^ ^J ^nfp, 4)..;. |pl SLCVaj.p.4) ^- • • • •  <<4 

vn+pfls.vntp-5f.& fl-(vnfp-5>+ M- d|2<vntp~5) 

180b3    d3  (v ^    c) .  lQ80b4    d4  <v   .    A)  L. /off. 
dx^     -•*-'• 24            dx 

Thus 

4.1 = vn+n.^.L.7b __ 
3> ? 2          dx 

^n4P4-ls vn+p~6jJ2l |-:(vn.,.p. 6kl5£   ^Cvn4,p..6< 

^ Wa   =* fe(Vn"p+l)f £: ^(vn-P+D- 2     67/ 

±H?^     gj(vn,p-6),||^i   g,<v„+p-^+-   -   • (26)        ] 

etc  until we  get a  scries  for vnfpt>1 in terras  of vn<, 

similarly 

vn-p~l r vn p -* J_(v      ) fc£ 4::^(vn.p)   -fcL d3   (vn.p) ax "2    ax*- 3       dxi 

h4    *4   , > (27) £— fl_T(vncsp) 
4      dx4 

_ b ra-.(vn-.Pf 1)  =b £,(vn»pfl)4 ft2 fll-Cvn-P+l). .   .   .   . I 
J dx dx* '  2    dx-3 j 

+ £552(vn-pti:   - bfl3 (vn„pti)^|S   ^(vn^pfl^ H 

-  f ffe('»-Ptl>  ~ "^W^  •Vl'j^vn .p+i> -  J =(2C 

L J     L' J 

ums$ammmm»''i 
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ax      ^    dx^   '    3  dx3 

, 17?J
4
 d4 (v   O (29) 

dx      n 2   dx^    ^ 
5^3 d3 (Vn,p^) 

dx-3 
(30) 

-rvn.p^ - lb ^(vn.,p+3)+6b2 j2 <vn.pj3) . |8b3 «3  <n,.>p^) 

trv.4 
(3D 

^ZSL.   £,<vn.p+3). 
dx 

sVn,.p+4 - & &.(vn.p^UgliS d£ (Vn.^4) - 53b3 dL,;v  ^4) 
dx       ' 2    dx2   "     j Av^ dx3 

-4 ,4 
-LL'iL <* (vn nj4.) i p-?< O   o   •  o   o 

(32) 
12   dx* " 

etc until we get. a series for vn„ -y   in terras of vQ 

If q is the number of turns removed from the reference turn a 
gonerel expression would be 

v„tqi,"n * & ^(vn )   f. S.?. [<£_ - A7J|£L(vn 

where 

h3f f  bJ &L    E 
•3 I 

2 
WMMM 

&L-<vn) • V 
) 

41 
I    •••••••gl »ri 
i dx^ 

... b5fa5     D*1d5   (V   ^ 

I""     J"" 
Af.O   q<3 

J2 (q~3)u 

*4 01 mai 

3 J^O 
|2 

q'4 

JfljJl- r 3J Q >; 4 

cf=o q'4 

1 2 
(q-3)2 

q>>4 
J- 21 

2     q^3 

8 

(33) 
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<T 
D \ -.0     o <4 

/sr2   (q-3)3    0^,4 
3. 

—      iv 

For^an  inside  turn using equations  (9)  and  (33) 

J/v(w",t)   -vCw' ,t)fdw,^G)(P+,l)  d_ vn, b2   (o-KL)2 -A' :'i£- v., 
-£ L J I dx    "+ "IT^ j dx?    n 

b3 (D-M)3 ~B»/dI,    »      b4 

t- 

(pfl)4 -c'/ £L v o       »       o       *       o 

dx"* 'M—- i JL 
[ 21 

A    d2 

jdX^ 

"\ t    1 
£H        '  BiJ »    d^        xr 

jr     ]S3 u 

b4  |p4 -C"     d4      v 
7 dx^        n • a a a b d V-<b2    d2    vn 

dx    ^'2T* Bx2' 

b3 d3 Vni&4 d      vn- 
31  dx-i    M-3  dx4 n 

.   o J. b d 'n+ b
2 d2    v 

d*    " J 2l dl2 n 

x. 1^ -jfil. v  . V^ _d4    v 4   .    ui)b <L v 
^3J  dx3    n\i    dx4    n '       dx    n 

x £f|!   -A"]  ^ vn4blj£ -B'«7 d3     v       b4[^ -c« 

J-b(p^l)   d_ vnJ.b
2. [(p-ft)2    ,\'flldl. vr,D

3|(pfl) 
i d.x      '       | 2~ dx2    "M ft~" 

7«4     *n. .. «       •       • 

J   -B"'M     v 

4 7" 4 
b^" j(o-fl) <•)<•••! a 

CO V1 I dx4 ( 

!dx 75 
n 

U 
(34) 

JL 
v(w",t)   -v(v(,t)   dvJ1 ~    - J   b2 j 4^ii4gt4     ,A*/d2 

/ J       / ~~i  2> Ux n 

— l)l=- 

=C*  d^    v   , b4 |4p-i + 3r,3 tl2t£±Sp±4      ~c* 
rl-jr.3 '        : 4" 

d4     V   1 
dx •        \ (35) 

where f0     p<2 
A* < 4   if  p - 2 

}8        p/,3 

C* will not bo needed later and is  not tabulated 

.iv-stii--.*- •.'•S-JMBs. ^. •. — a.  .   »• •*"» '*»•   Jt-^'^^^iMBB^SSMWWWi^aWiMSfci; ^^•W«='--   ^3M ,<»ffe-»...   .»•- •" 
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} 

Prom an inside boundary turn using equations   (10)   and  (33) 

v(w«,t)   -v(w<9t};dw'~     kPb d_ v   ,,bf p2 . A»7 d2    vn 

I """ to     '   [5T     J d? 
^ fe -B«   Jd3     vn , b4 [p4     „c„1 d4     v b  d       v 

/ 3' /dx3       <      / 4j /dx4       T     dx 

Kk£   flL vn i. VJ    d3    v   . b4      d4 
*•     dx«=        -  j>3     clx-^        '  41       dx« 

Pb A,, v     *L.teL. ~A«i df, vn.b3 ^B«']dL yn4j£ j> ~ci4 vr 

I _J    CiX< 

jJ>Cja±l)JL vn,b^Ll)2   -A"']dfL  v     b3 f(pi-l)3  »B'"]d3    v 
1 dX I I   5i I ^,,9      ~f-=~     ~-~ —=~r     n 

3° J^x (dx2 
... 

4   A ^ , i > 4  _r>Hi|' J* 

ff 

,   b"   Cp+i)''  -C»']ti' 
^ j dx4 } 

(36] 

Jjv(w",t)-v(w' ,t) I dw»- - f(p*2)     bd    v.b2 Hp2* 2u-K>    ^Id2    v 

s b r 

where 

dx- 

A**    [ 0     P ^2 r *J  2  if  p - 2 
v.. 

foi* an outside boundary turn using equations (11) and 03) 

Jv(w"t)   -v(w.'t)  [dwL   -  )~(pfl)bcL vn 
>   """""~    dx s7 J I 

,b2   (pfl)2   -A'jd2     v       r,3   (ofl)3  „B'        d3     v 
/2! dx* j i» dx3 

,   fil   p^i)4   -C'/dL -V.   .   .   .o^bd v    , b2  |> 

I 
10 

(i l,a^ 

? f 

dx ,k 

"  •-•    -    '     •--• -   • •*   - -   < " -**.^ 

.^..-, : •**. s«B^»&!WWaii^ll««*BWsrsflP»-? 
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b3 Hi    »B»^    vn ,£ U.c«]d 
3J dxJ •\3 •nJ.iL. |£_ -C"["     V 1 I 4J Idx4 

b    d    vnfif      £L vn - lb3    £   vni*4    cl4    v dx 
d:c 3 J       cb° ax 

, £b d_ VjabSfpS    -A-'Jdf    vn , b3  p3 _B.i    d3._ vn 

3-' dx-5 

r. 
4» 

•C d4     v 

dxH C • 9 I (38) 

jv(w"t)   -v(v;»,t) | dw»ss - ) -(p+2)  bd_ v    ,/D2 
I ~* "dx    "' ! 

3p->2p-H2  - A°* d11"       v„ -TJ      n 

b3 >
3
-3P

2
.3P -B°*f£. v     b*[3 p^W   -4P4-2 

3.' |dx:i J 4« 

-where    Aot    v 0 

(6 

p < 2 
p ; 2 
o ?,3 

2 

dx 

o*id4    vr/ 
dx^      ( 

J 

(39) 

?     C°*l£L vnt 

To a  first approximation we  may neglect all terms higher than 
the  second  derivative   if  the  phase  shift  per  turn is   small.. 

(40) 
urn 

e<» 

v(w",t) -v(w't) dw1-  b2£p2f p^i)2 -A*7d
2 vn for an inside t 

j jdx2 

(41) 
:-b(pf2) d_ V 

dx n ~« 

for inner boundary turn. 

3P^f2p-f2 ~A*   (H v 

2 J       'idx*1 

ifo(w",t) -v<w»,t) dw'r: b(of?) d_ v  - b2/3P?'7 2pf2 -A°* | d_2 v„ 
-~L  ' J dx        21        I dx- 
for outside bondary turn (42) 

I*© If P^.3 and  substituting w"  for x 
1 r 

..   £Xk 

v(w"^)     v(v;'t) jdw?~     jb(p?2)  d_ v   f b2 3p2f 2p^-2 -A* id2   vn 
•     ' - - ' fdw^ 

(43) 

QW i 2J 

b2(p-2)|   (n^pfl)2   -A* JdJL vn  -   b(p^)   d_ vu 

b2 bsfi^oi^ ~r j d2   vn ] 
| 2: j dF2        f 11 

*• .^u.-. 



1 |v(\v",t)   -v(v?a,t)     dwE-   •- .)b2(2p3^-p2     -2    A0)   d£._    vA 

where An:r 8p -4     P  > 3 

(44) 

For  the  special  case  of a  2  layer coil 
DO 

v(w",t)  -v(w',t) I dw'-«14b^  dT_.    vn 
LL i        * dw'2 

,',  )f"v(w%t)   -v(w',t)|  dw'-    Kb2 d5_o = K yL b2 v 

(45) 

(46) 

where K  is  given  in Table.   1. 

TABLE     I 

Number of Layers 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

K 
j. 

14 
43 
116 
239 
424 
633 
1028 
1471 
2024 

A plot of K vs the number of layers appears in Figure 3« 

Equations 1 and 2 then become for sinusoidal applied voltages as 
in equation 3- 

J <*E  - ri .|,.](4L4L(^ (47) 

jfcft - Gv^jC* (Co^J^bKgti 
V 

(48) 
V 

If 
These equations are those of an ordinary distributed constant 1 

L : L CM) 

L  *    c0 

C4q) 

(50) 

12 
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If the line Is now assumed to be lossless, the well Known 
solution of the transmission line equations of interest ares 

time delay (per unit length) T =yLC  (sec/meter) 
met p **• » it 

phase shiftzQ) -UJHLC (rad/meter) 

characteristic  impedance     z( YC 
(ohms) 

(5D 
(52) 
(53) J°   Y C 

Inserting equations   (6),   (4c)  and  (50)   Inequation (51)  we obtain 

/I 
To/ 

H 2*1   U2£)   %   (ffi))   i  l-i/^f   £LJ£     i       (54) 
•"A \T* J 

where TO^V/L0CO?   is  the  low frequency time delay.     Substituting 
in equation  (54)  for ^    we  obtain 

/if- 21.,      (3TD)     *!     (2jB)   [lf<»     <W  '; (55) 

where 4 Ct Kb 
f.       IK (56) 

12o It is thus apparent that the stray ctpacitance between 
turns, G+, is multiplied by a fsctor K0 For a single layer line 
(K = 1) the effect of this capacitance is negligible,. For a 3 
or more layer line K has been increased many times and actually 
is large enough to compensate for the decrease of Inductance with 
frequency as far as time delay is concerned» It is true that the 
characteristic impedance will suffer from this compensation, as 
it does with all other known compensation measures in delay lines. 
However the time delay is in general far more critical than 
characteristic impedance. This stray capacitance actually becomes 
our compensation and these lines are thus called self-compensated 
lines0 

13 • & plot  of $0 from equation (55) is shown in Figure **o It 
will be observed that for a given delay line with q>o, 3; 

o 
decreases as the frequency increases to some minimum value and 
then increases without limit,, If the maximum variation in time 
delay is prescribed q may be determined«> 

l*f<, "If the variation from a linear phase characteristic is no 
more than 1/2 radian in a frequency range of .1 

3 x pulse length 

..  „••*..,  '-' •**. "''        ** '**' 
'-».' iU^waMEE»~; • . .     I - 
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there will probably be no serious loaa of signal detail©"8 
"If the variation from a linear phase characteristic is as 
much as one radian in a frequency range of 1 

3~: "^ulaeTTengih" 
complete loss of signal detail may be expected, o If a syst-em 
is to pass pulses of duration T the approximate bandwidth is 
made" 

P • 1 • (57) 

Prom the above, however, v/e require that the deviation from 
linearity in 2/3 of the bandwidth given by equation (57) shall 
not be more than 1/2 radian* 

15*  Thus, if a pulse whose duration was 0.166 microsecond was 
to be passed, the phase distortion would have to be less than 
1/2 radian up to 2 megacycles•  This corresponds to a total 
error in time delay (T-T0) of 0o0l|. microseconds, Thus, if the 
total delay was 1 microsecond the error could be ]+#<> 

T 16. Let us arbitrarily allow the m    curve to go as much above 
io 

1, for a given value of q, as the curve did go below 1© Thus, 
from Figure i|, we can secure the %  variation in time delay vs 
q.  This curve appears as Figure 5» Thus, in the example of the 
last paragraph q must be greater than 0*55• Figure 6 is a plot 
of % variation in time delay vs (, "^. -)max° Tbe valuo °* 
was obtained from Figure \\. where the* T/To curve orosses the 
maximum error in T allowable in upward direction. Figure 7 shows 
(^  )n«>y vs q from Figures 5 s^d 6* 

A 
17* The variation In time delay of these multilayer self* 
compensated lines are very similar to single layer lines with 
compensation patches?, 

i8o The design equations of multilayer lines may now be stated. 

Rewriting equation (56) as 

C  8 >fCt Keb farads/meter,   (58) 
o   —^ ) 

and using Ct -  ^ ^2^^   r^—    farads,        (59) 

7F    J b^a" 
where Kg is the relative dielectric constant of the insulation 
on the wire, we finally get 

• 

0o » k-jf 2Kg £ 0Kb  rg—       farads/meter„   (60) 

D /2~q   J  S^a 
ThSs Is a convenient form to relate the compensation capacitance 
(C*) to the capacitance to ground (c ) as we have equations to 

Ik 



NAVORD Report 3759 

relate to CQ  to the physical dimensions of the line, 

Co " 2<rrKed go farada/meter,    (6l) 

where K^ is the dielectric constant; of the insulation between 
the core and the winding, 

Do la the core diameter, 

and D^ la the diameter of the core plus the inaulationo 

19o This almple formula is applicable In most multilayer linos, 
but it should be noted that there is a capacitance formed by 
the insulation on the wire itself. As the dielectric constants 
are not, in general, the same, more exact results may be secured 
by considering both mediums10. In most cases however equation 
(61) la accurate enough. 

2Qo She inductance of a long solenoid is given by the well 
known expression 

L. » TTN
2
 D2MC (henries/meter),  (62) o    j-  

where N la the number of turns per meter<> 

21o From Figure 4 *•* is obvious that some variation in time 
delay is unavoidable• This variation in time delay is a vari- 
ation in phase response (see equations (51) and (52))„  It is 
well known that any variations in the amplitude or phase response 
of a system will alter the wave form of the output signal of the 
systemso From the method of paired echoesA1 we know that 
amplitude distortion produces distortion symmetrical about the 
center of the pulse, while phase distortion produces antl« 
symmetrical distortion of the pulse. The response of a unit 
impulse passed through several kinds of amplitude distortion is 
shown in Figure 3s Frosi some measurements made on the amplitude 
distortion of these lines with sinusoidal signals applied, it 
appears that the response of these lines resembles (c) through 
much of the range with e sharper drop at so*ae higher frequency 
where the amplitude is already very low© 

22 o The phase distortion of an uncompensated and self "compensated 
line is shown in Figure 9<> The phase distortion approaches the 
form indicated in Figure 10o Ths response to a unit impulse is 
also shown In Figure 10 if the phase error is assumed sinusoldalo 
The response is altered by the echo or impulse overshoot. The 
magnitude•*•* of this echo is 

Jl (££) 
JrT*11    ' (63) 
3-5 
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where J-, ia the E®ssel Function of the first kind and 1st 
order,      j is the Bessel Function of the first kind and 
Oth order,    ° 

23. It is thu3 apparent that the amplitude distortion produces 
symmetrical overshoot echoes and phase distortion produces anti- 
symmetries! overshoot echoes. Measurements of amplitude and 
phasa distortion echoes on typical lines used in this report are 
shown in Table II. This table demonstrates that phase dis- 
tortion is causing most of the overshoot in most of the lines 
wound. 

2*f. Thus with the aid of equations (5l). 153), (60), (6l). 
(62), (57)  and statement below equation (57), and Figures 3, ** 
and 5 this type of line may be designed. Lines have been wound 
when the average number of layers was not an integer. In this 
case the value of X was read from Figure 3 for the average 
number of layers. No difference in performance of these lines 
has been noticed. 

25* In general, lines have been bank wound with layers from 2 
through 5 and wire sizes from 32 through k? with several kinds 
of insulation. These lines have had Impedances from 2.000 ohms 
through 10,000 ohms and time delays from 2.5 to over 3$ micro- 
seconds per meter. Examples are given in Table II. Experi- 
mental evidence to substantiate the theory developed in this 
section will be given. 

Line Construction 

26. The lines were wound on 3/l6 inch diameter polystyrene 
cores 12 Inches long. These cores were given several coats of 
silver conducting paint to form the ground strip. Although the 
cores could be slotted after an overnight drying period a much 
cleaner cut was made if the drying period was several days. 
The cores were axially slotted forming 36 thin strips, each 
strip being about 0.015 inch wide. The slots were about 0.003 
inch wide. A one inch length of the core was left unslotted to 
facilitate the connection of the external ground lead. The core 
was covered with a layer of insulating material to give the re- 
quired winding-to-core capacitance. A piece of thin teflon 
tape was wound around the core. A number of small pieces of 
scotch cellophane tape held the teflon on the core until the 
line was wound. The scotch tape was removed piece by piece as 
the line was wound. 

27. The winding was done on a lathe. In order? to provide 
uniform wire tension, both to secure a good winding and to pre- 
vent breakage, a wire feeding device was used. The wire feeding 
device and the slotting device are shown in Figure 11. The wire 
tension was adjustable over a range of about 10 to 70 grams. 
The tension was continuously indicated by a pointer. 

16 
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28o A wire guide attached to the longitudinal feed of the 
lathe was placed about 1/16 Inch from the core, which was 
chucked In the lathe* The longitudinal travel of the wire 
guide could be ao low as 0*, 00066 inoh per turno As this 
distance Is a fraction of the wire diameter, the result was a 
multiple layered coll approximating a bank winding. The far 
end of the core was attached to a counter chucked in the tall° 
stock * A steel drill rod was Inserted through a hole In the 
core for rigidity. A 10 Inch long winding was wound on the 
core* Lines have been wound with speeds varying from about 
200 to 800 rpm0 

29« A magnified view of the end of the line showing details 
of construction appears In Figure 12„ 

Measurement s 

309 The method for determining the characteristic impedance 
of these delay lines was baaed upon the fact that no re- 
flections occur in an Idealized delay line terminated In 
character1stic impedance.  The value of the characteristic 
impedance in a praotlcal case involving complex waves must 
therefore be compromised for minimum reflections over the band 
of frequencies for whioh the line is designed to operate* The 
lines were terminated at the input as well as the output to 
minimize any possible secondary reflections at the input* A 
suitable means of determining the effective characteristic 
impedance when the line is used to delay rectangular pulses is 
to feed the pul&e itself Into the delay line and to adjust the 
terminating impedances for minimum reflections* A block diagram 
illustrating the experimental method for determining the 
characteristic Impedance of these delay lines and for recording 
the response of the delay lines to rectangular pulses appears 
in Figure 13c  The pulse generator was of the delay line type© 
RO-65/U delay line cable was used* This pulse generator was 
triggered by a La vole type LA~592A pulse generator* A Hewlett 
Packard type 212A pulse generator was used on oocasion in 
observing the response of the lines to pulses of greater than 1 
microsecond duration,, A Tektronix type 517 oscilloscope was 
used,  The oscilloscope sweep was triggered by the input pulse* 
A camera, mounted on the oscilloscope, was used to record the 
input and output wave shapes of the delay line, A video amplifier 
was placed between the delay line and the pulse generator. The 
load impedance of the video amplifier was made equal to the 
characteristic impedance of the liner A diagram of the video 
amplifier appears in Figure 14* 

310 The pulse distortion and attenuation were also measured 
with the same equipment* The oscilloscope camera was used to 
record the wave forms of both the input and output signals and 
the measurements were made directly from the photographs as the 
sweep of the type 517 oscilloscope is quite linear and the sweep 
time in milli»microseconds per centimeter quite accurate. 

: 

- 
3 
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32e The vertical gain was kepi; constant for both input and 
output pulses so that attenuation measurements could be made 
from the photographs• 

33o The delay time as well as the rise time and fall time was 
likewise measured on the oscilloscope,. The delay time was 
defined as the time between the mid-point of the leading edge 
of the input and output wave forms• The rise and fall tlmea 
were defined as the time duration between the 10# and 90$ values 
of the pulse amplitude• The pulse duration was defined as the 
time between the $0%  values. The attenuation was measured by 
comparing the amplitudes of the input and output pulses* 

3I+0 Although the pulse response of the lines was Used as a 
measure of their ability, some sinusoidal data were taken,,  In 
crder to determine the validity of the equations, a line was 
connected to a r*f. signal generator through a 10,000 ohm 
resistor as shown in Figure 15* The Tektronix 517 oscilloscope 
was used as a VTVM» With the line short circuited, the frequen» 
cies at which the impedance of the line was a minimum, was noted. 
The line was thus electrically A, 3 h 

2 TT 
etc longo The measure* 

ments were repeated with the line open circuited, the line then 
being £, 3 A , 5 A etc* long electrically* Prom this data* the 

measured values of LQ. and 0o at low frequencies, and the physical 
dimensions of the line. irD could be calculated* 

T 
Experimental Results 

35o Photographs of the input and output wave forms for several 
short lines appear in Figure 16* All input pulses are 1 micro* 
second duration*  Line A has an average of i|«7 layers of AWO 
ijlF wire and was I065 inches long v/ith a delay of 1-03 micro° 
seconds* This line had a bad reflection occurring near the 
middle of the line as can be observed* Line B has If.'layers of 
AWO I4JLF wire and was 2*14J. inches long with a delay of 0*6 
microsecond* Line C has 3 layers of AWG 39F wire and «as 2«=»3/fy- 
inches long and had a delay of 1017 microseconds0  The last row 
of photographs are the input and output wave forms observed 
using a 15 foot piece of RGt=>65/TJ cable which had a delay of 0<>7 
microsecond* The gain of the scope was kept constant in each 
line ao that the attenuation in the lines may be oboervedo 

36* Photographs of the inputs output and Input and output wave 
forms superimposed for another line appear in Figure 17o  Line 
D has 3 layers of AWO IflHF wire and was 9*75 inches long*  It had 
a delay of 2,1 microseconds*  In the photograph of input and 
output wave forms superimposed come small variations are observed 
in the base lixra* Those not originating with the pulse Itself 
(due to finite passband and compensation limitations) probably 
occur due to minor reflections from discontinuities in the linec 

£8 
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Reflections of this magnitude are present in most of the lines 
wound* For comparison purposes the response of a k6 foot piece 
of RG-65/U cable is shown as well as a 3 foot piece of General 
Electric 1100 ohm cable. 

37. Examples of lines wound with other insulated wires appear 
in Figure 18, All these lines are wound with 3 layers of AWG 
*+l wire with different types of insulation. Line F was wound 
with heavy formex insulation (Kg = 3.1). line F was wound with 
Sprague Electric Company Ceroc ST insulation (assumed Kg = 3). 
This wire has an inorganic ceramic insulating coating thinly 
deposited on copper wire with an overlay of teflon* Line G was 
wound with Sprague Electric Company Ceroc 200 insulation 
(assumed K© • 3). This wire has an overlay of silicon instead 
of teflon out otherwise the same as Ceroc ST. Line H Is a 
teflon insulated wire (Kg « 2) of Hitemp Wires, Incorporated. 
In general the characteristics of all these lines are similare 
Due to the lower dielectric constant of the teflon, line H has 
a higher characteristic impedance and a shorter delay per unit 
length. 

38. Lines have been wound with size AWG h? wire. The pulse 
response of such a line appears in Figure 19. It will be noted 
that the attenuation for this line is considerably greater than 
those previously mentioned. This is due to the increased ohmic 
resistance of this very small wire. Extreme care had to be used 
in winding lines with this small wire. 

39B The response of a higher impedance line is shown in Figure 
20. This line had characteristic impedance of 10,000 ohms. 
The response of another line to pulses of various durations is 
shown in Figure 21. 

M). An attempt was made to check Figure h by the method outlined 
in section 17. The measurements made on line C is shown in 
Figure 22. The crosses indicate open circuit measurements and 
the circles indicate short circuit measurementsf  a comparison of 
Figure 22 and Figure h indicates that q is about 0.**. From 
measurements of capacity to ground the value of q was found to 
be 0.605o The error is considered to be well within experimental 
limits when one considers that there was no means of accurately 
placing each turn in accordance with the geometrical pattern 
assumed in the theoretical derivation. Measurements were also 
made on several other lines and the discrepancy of these lines was 
about the same as the one shown. 

*H. Characteristics of a line with longer delay are shown in 
Figure 23. This line was 35-1/2 inches long and had a delay of 
7.35 microseconds. As a comparison a 112 foot section of 
RG-65/U cable is shown. This cable had a delay of 5ob" micro- 
seconds. It is apparent that the rise time of this line is 
considerably better than that of RG-65/U cable even though its 
delay is considerably longer„ Several bad reflections are apparent 
due to wire breakage and improper winding. 

&*,, • •   * 

19 



oytrMi*1 * 

NAVORD Report 3759 

*f2. The rise times of several of the lines which were more or 
less identical have been plotted In Figure 2h,    The data points 
on curve are indicated with crosses. The data points for RG-65/U 
cable are indicated by circles. From this curve it is apparent 
that the rise time of self- compensated lines and RG-65/U cable 
are about equal at a delay tiiae of about 3.? microseconds and at 
longer delays the self-compensated line is considerably better. 

**3« More data on the lines shown in all the photographs appears 
in Table II. The cut-off frequency is computed from the rise 
timell. 

*o =  P.W? CM 
Tr 

CONCLUSIONS 

MH Experimental evidence has shown good agreement with the 
theoretical analysis within experimental error. 

*f5« It is observed that these multilayer self^-compensated, bank 
wound lines have considerably longer delays per axial inch, have 
considerably reduced attenuations for the same delay time, but 
suffer from more internal reflections- For short delays (up to 
about 2 microseconds) the rise time is considerably poorer. This, 
of course, means lower cut-off frequencies. At delays of greater 
than h microseconds, however^ the rise time is considerably better 
than RG-65/U. This is attributed to the fact that the output 
pulse of these lines remains largely unchanged as the time delay 
increases, while RG-65/U cable has an exponential rise and fall 
with a flat top. 

h6.    Experimental evidence indicates little variation of 
attenuation with different wire insulating materials. A higher 
dielectric constant material on the wire would give increased 
compensation and thus give even greater delays per unit length* 

h7.    It appears that the attenuation of these lines can be re- 
duced somewhat and fewer minor reflections obtained if a better 
winding technique can be developed to approach more closely a 
true bank wound line. 

20 
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